Discussion 20 Worksheet More Stokes and Divergence

Date: 12/1/2021
MATH 53 Multivariable Calculus

1 Archimedes' Principle

The Force exerted on a solid D with surface S fully submerged in water is given by

$$
\mathbf{F}=\iint_{S}-p \hat{\mathbf{n}} d S
$$

where the pressure p is given by $-\rho g z$ (ρ is the density of water and g the gravitational acceleration) if we assume that the surface of the water is at $z=0$. Use the divergence theorem to show Archimedes' principle $\vec{F}=\rho g \operatorname{vol}(D)$.
Hint: Compute $\mathbf{F} \cdot \mathbf{i}, \mathbf{F} \cdot \mathbf{j}, \mathbf{F} \cdot \mathbf{k}$

2 identities

Prove each of these identities, assuming that D is a solid region in 3D space and $S=\partial D$.
(i) $\iint_{S} \mathbf{a} \cdot \mathbf{n} d S=0$ where \mathbf{a} is any constant vector.
(ii) $\operatorname{Vol}(D)=\frac{1}{3} \iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=(x, y, z)$
(iii) $\iint_{S}(f \nabla g) d S=\iiint_{D} f \nabla^{2} g-\nabla f \cdot \nabla g d V$

3 parametrizing surfaces

Parametrize the following surfaces
(a) $x^{2}+y^{2}+1=z^{2} \quad$ (Hint: graph)
(b) $x^{2}+y^{2}=z^{2} \quad$ (try spherical coordinates)
(c) $x^{2}+y^{2}=\left(1+z^{2}\right)^{2} \quad$ (Hint: cylindrical coordinates)
(d) $y^{2}+z^{2}=e^{x}$
(e) $e^{x}=1+y^{2}+2 \cos ^{2} z$
(f) $\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}=2 x^{2}+2 y^{2}+z^{2}$
(g) $x \sin z=y \cos z$

4 Stokes / surface integrals

1. Compute $\iint_{S} \vec{F} \cdot d \mathbf{S}$ where $\vec{F}=\left(x^{2}, 2 z,-3 y\right)$ and S is the portion of $y^{2}+z^{2}=4$ between $x=0$ and $x=3-z$.
2. Compute $\iint_{S}(\nabla \times \vec{F}) \cdot d \mathbf{S}$ where $\vec{F}=\left(y,-x, y x^{3}\right)$ and S is the portion of the sphere of radius 4 with $z \geq 0$ and the upwards orientation.
3. Compute $\iint_{S} \vec{F} \cdot d \mathbf{S}$ where $\vec{F}=\left(\sin (\pi x), z y^{3}, z^{2}+4 x\right)$ where S is the surface of the box $-1 \leq x \leq 2,0 \leq y \leq 1$, and $1 \leq z \leq 4$, oriented outwards.

5 Stokes' theorem

1. Verify Stokes' theorem for the following surfaces S and vector fields \mathbf{F}.
(a) $\mathbf{F}(x, y, z)=(y, z, x), S$ is the hemisphere $x^{2}+y^{2}+z^{2}=1, y \geq 0$.
(b) $\mathbf{F}(x, y, z)=(-y, x,-2)$ and S is the cone $z^{2}=x^{2}+y^{2}, 0 \leq z \leq 4$.
2. Use Stokes theorem to compute the integral of $\mathbf{F}(x, y, z)=\left(-y+z e^{x^{2}-y^{2}}, x+z e^{y^{2}-x^{2}}, 0\right)$ around the circle $x^{2}+y^{2}=1, \underline{z=1} \quad$ (Hint: The integral would be easy if $z=0$.)

6 Past final problems

1. Let C be the spiral $r=\theta$ between $\theta=0$ and $\theta=a$, for some $a>0$.
a) Set up an integral to find the integral of $x y$ over C with respect to arc length. Do not attempt to evaluate the integral.
b) Write down a vector field \vec{F} (not depending on a) such that $\int_{C} \vec{F} \cdot d \vec{r}$ is equal to the integral in (a).
2. Calculate $\iint_{S} \vec{F} \cdot d \mathbf{S}$ where S is the unit sphere $x^{2}+y^{2}+z^{2}=1$, oriented using the outward pointing normal, and

$$
\vec{F}=(x+\sin y, y+\sin z, z+\sin x) .
$$

3. Let \vec{r}_{1} and \vec{r}_{2} be two parametric curves in three dimensions that satisfy

$$
\begin{aligned}
& \frac{d \vec{r}_{1}}{d t}=\vec{r}_{2}-\vec{r}_{1} \\
& \frac{d \vec{r}_{2}}{d t}=\vec{r}_{2}+\vec{r}_{1} .
\end{aligned}
$$

Show that $\vec{r}_{1} \times \vec{r}_{2}$ is constant in time.
4. Find the volume of the solid enclosed by the surface

$$
\left(x^{2}+y^{2}+z^{2}\right)^{2}=2 z\left(x^{2}+y^{2}\right) .
$$

