Discussion 20 Worksheet More Stokes and Divergence

Date: 12/1/2021

MATH 53 Multivariable Calculus

1 Archimedes' Principle

The Force exerted on a solid D with surface S fully submerged in water is given by

$$\mathbf{F} = \iint_S -p\hat{\mathbf{n}}\,dS$$

where the pressure p is given by $-\rho gz$ (ρ is the density of water and g the gravitational acceleration) if we assume that the surface of the water is at z = 0. Use the divergence theorem to show Archimedes' principle $\vec{F} = \rho g \operatorname{vol}(D)$. *Hint: Compute* $\mathbf{F} \cdot \mathbf{i}, \mathbf{F} \cdot \mathbf{j}, \mathbf{F} \cdot \mathbf{k}$

2 identities

Prove each of these identities, assuming that D is a solid region in 3D space and $S = \partial D$.

(i) $\iint_{S} \mathbf{a} \cdot \mathbf{n} \, dS = 0$ where \mathbf{a} is any constant vector.

(ii)
$$\operatorname{Vol}(D) = \frac{1}{3} \iint_{S} \mathbf{F} \cdot d\mathbf{S}$$
 where $\mathbf{F}(x, y, z) = (x, y, z)$

(iii)
$$\iint_{S} (f\nabla g) \, dS = \iiint_{D} f\nabla^{2} g - \nabla f \cdot \nabla g \, dV$$

3 parametrizing surfaces

Parametrize the following surfaces

- (a) x² + y² + 1 = z² (*Hint: graph*)
 (b) x² + y² = z² (try spherical coordinates)
- (c) $x^2 + y^2 = (1 + z^2)^2$ (Hint: cylindrical coordinates)

(d)
$$y^2 + z^2 = e^x$$

(e)
$$e^x = 1 + y^2 + 2\cos^2 z$$

(f) $(x^2 + y^2 + z^2)^{3/2} = 2x^2 + 2y^2 + z^2$

(g)
$$x \sin z = y \cos z$$

4 Stokes / surface integrals

- 1. Compute $\iint_S \vec{F} \cdot d\mathbf{S}$ where $\vec{F} = (x^2, 2z, -3y)$ and S is the portion of $y^2 + z^2 = 4$ between x = 0 and x = 3 z.
- 2. Compute $\iint_S (\nabla \times \vec{F}) \cdot d\mathbf{S}$ where $\vec{F} = (y, -x, yx^3)$ and S is the portion of the sphere of radius 4 with $z \ge 0$ and the upwards orientation.
- 3. Compute $\iint_S \vec{F} \cdot d\mathbf{S}$ where $\vec{F} = (\sin(\pi x), zy^3, z^2 + 4x)$ where S is the surface of the box $-1 \le x \le 2, 0 \le y \le 1$, and $1 \le z \le 4$, oriented outwards.

5 Stokes' theorem

- 1. Verify Stokes' theorem for the following surfaces S and vector fields \mathbf{F} .
 - (a) $\mathbf{F}(x, y, z) = (y, z, x), S$ is the hemisphere $x^2 + y^2 + z^2 = 1, y \ge 0.$
 - (b) $\mathbf{F}(x, y, z) = (-y, x, -2)$ and S is the cone $z^2 = x^2 + y^2, 0 \le z \le 4$.

2. Use Stokes theorem to compute the integral of $\mathbf{F}(x, y, z) = (-y + ze^{x^2 - y^2}, x + ze^{y^2 - x^2}, 0)$ around the circle $x^2 + y^2 = 1, \underline{z = 1}$ (*Hint: The integral would be easy if* z = 0.)

6 Past final problems

- 1. Let C be the spiral $r = \theta$ between $\theta = 0$ and $\theta = a$, for some a > 0.
 - a) Set up an integral to find the integral of xy over C with respect to arc length. Do not attempt to evaluate the integral.
 - b) Write down a vector field \vec{F} (not depending on *a*) such that $\int_C \vec{F} \cdot d\vec{r}$ is equal to the integral in (a).
- 2. Calculate $\iint_S \vec{F} \cdot d\mathbf{S}$ where S is the unit sphere $x^2 + y^2 + z^2 = 1$, oriented using the outward pointing normal, and

$$F = (x + \sin y, y + \sin z, z + \sin x).$$

3. Let $\vec{r_1}$ and $\vec{r_2}$ be two parametric curves in three dimensions that satisfy

$$\frac{d\vec{r}_1}{dt} = \vec{r}_2 - \vec{r}_1$$
$$\frac{d\vec{r}_2}{dt} = \vec{r}_2 + \vec{r}_1.$$

Show that $\vec{r}_1 \times \vec{r}_2$ is constant in time.

4. Find the volume of the solid enclosed by the surface

$$(x^{2} + y^{2} + z^{2})^{2} = 2z(x^{2} + y^{2}).$$